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Abstract. In this paper we consider the general question in the ®eld of mathe-
matics of whether some properties or algorithms that hold in ®nite dimension
spaces also hold in function spaces. We answer this question concerning the
very well-known Weiszfeld algorithm for the Weber problem. In order to do
that, we consider the Weber problem with trajectories (functions of time)
instead of points in a ®nite-dimensional space. This is in fact the problem of
locating a moving service facility. Properties are proved assuring that the
problem is well-established and that an optimal solution exists if Lp 1U
pU �y spaces are considered. An extension of Weiszfeld's algorithm is
proposed to solve this kind of problem and it is shown that under some
assumptions it presents global convergence properties. Moreover, an example
is included showing that this extension is not trivial because the natural
pointwise extension of Weiszfeld's algorithm does not have to converge to an
optimal solution of the considered problem while the new algorithm does.
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1 Introduction

An important area of development of the Operations Research is the new
adaptation of tools of Mathematics to classical problems of this ®eld. Within
the ®eld of Location Theory one of the most widely studied problems is the
well-known Weber problem. In the basic model we deal with a set A of given
points (the demand points) and we want to locate a new facility x� minimizing
the weighted sum of distances to the points in A.
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A large number of authors have studied this problem because it is an useful
way to model real-world applications (see for instance the book of Francis et
al. (1992) or the paper of Wesolowsky (1993)). The most extensively used
method to solve this problem is the so called Weiszfeld algorithm. Weiszfeld
algorithm is an iterative method based in a ®xed point equation obtained from
a necessary optimality condition for this problem. Several papers have dealt
with the convergence of this algorithm and with its improvements and exten-
sion (see for instance Chandrasekaran and Tamir (1989), Drezner (1992) and
Brimberg and Love (1993)). However, there was still a general question con-
cerning this algorithm that had not been considered. It corresponds with the
general question in the ®eld of mathematics of whether it is possible to apply
similar tools in ®nite and function spaces. One of the aims of this paper is to
show that Weiszfeld algorithm can be reformulated to deal as well with loca-
tion problems in Lp spaces of functions. Apart from the importance itself of
providing the same kind of tools for these two di¨erent frameworks (®nite and
function spaces) this paper also shows that this extension is not trivial. In a
®rst analysis, one could think that the formulation of Weber problems in Lp

spaces of functions should lead to algorithms whose application consists of a
pointwise extension of the corresponding in ®nite dimension spaces. Never-
theless, as we show in the paper this is not the case. In the last section we
provide examples where the pointwise application of the classical Weiszfeld
algorithm produces worse solutions than the obtained applying the proposed
algorithm.

In order to study these questions we deal with an extension of the Weber
problem that we call the Dynamic Weber problem. It consists of substituting
the points in the set A by trajectories (functions of time), so that we replace
the environmental framework from a ®nite-dimensional space to a in®nite-
dimensional one. In fact, this problem consists of locating a moving service
facility with respect to moving service demands.

Although this approach has not been previously addressed in the literature,
several attempts can be found dealing with earlier versions of the problem of
locating moving service facility. The most direct reference corresponds with
the paper of Abdel-Malek (1985). He studies a very particular case of location
of a moving facility under squared Euclidean distance. Wesolowsky (1973),
studies a Weber problem where he imposed that initial conditions (the weights
and the demand points) varied in a ®xed number of epochs. Wesolowsky
(1975), generalizes the classical location-allocation problem allowing the cost
functions being di¨erent at di¨erent ®xed epochs. Recently, Drezner and
Wesolowsky (1991) generalize the Weber problem to the case where the
weights are allowed to change a ®nite number of times. The goal is to ®nd an
optimal solution being a step function.

Apart from looking for the answer of our previously considered question
there are two more reasons which justify this new approach to the Weber
problem. The ®rst reason is connected to the nature of this approach. Indeed,
although it is a variational problem it does not ®t the requirements of Euler-
Lagrange condition: 1) we are interested in general solutions non necessarily
smooth, and 2) the objective function of this problem is

X
a AA

wa

XN

k�1

�
I

jxk�t� ÿ ak�t�jpdt

 !1=p
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which cannot be transformed into the usual one
�

I
F�t; x; x 0� dt. Therefore, in

order to solve the problem ``ad hoc'' procedures have to be developed.
The second reason relies on the properties of the optimal solution of

this problem and justi®es the mathematical foundations of the proposed
algorithm. As we have already mentioned, the optimal solutions of this prob-
lem do not have to coincide with the pointwise solution (see Brimberg and
Love (1993) for details on the convergence of classical Weiszfeld's algorithm).
That is, the solution obtained when solving the problem optimally for each
time epoch t in the interval I.

Regarding to its applicability, this model and the proposed algorithm
can be used to solve location problems as well as to perform non-parametric
estimation of the mean, median or more complex functions of stochastic
processes or time series. On the other hand, as well as the classical Weber
problem allows us to compute sample 1-principal points of random vari-
ables (see Flury (1990)), this new approach leads us to the computation of 1-
principal functions of stochastic processes. In addition, it should be noted that
the dynamic approach adapts better than the static one to model certain lo-
cation situations. For instance, the location of a trajectory of a moving service
facility with respect to a set of ®xed routes or corridors.

This paper is organized as follows. In Section 2 the Dynamic Weber
problem is formulated and several preliminary properties are shown. Section 3
is devoted to extend the well-known Weiszfeld's algorithm to this kind of
dynamic problems. Section 4 proves some preliminary properties and Section
5 proves the global convergence of the proposed methodology. In addition, it
also includes an illustrative example of application of our algorithm which
shows that the pointwise solutions are not necessarily optimal for this prob-
lem. The paper ends with some conclusions.

2 The model

Throughout this section, we introduce a location problem which consists of a
generalization of the well-known Weber problem. We consider the normed
spaces Yp :� Lp�I ;RN� and Xp :� Lp�I ;R�, being I a ®nite interval. That is,
x A Yp means that

x :I ÿ!RN

t 7! x�t� � �x1�t�; . . . ; xN�t��
where each xk� � � belongs to Xp for all k � 1; . . . ;N. The norms in these
spaces are de®ned for any x A Yp by

kxkp :�
XN

k�1
jxkjpp

 !1=p

and for any xk A Xp by

jxkjp :�
�

I

jxk�t�jp dt

� �1=p

:
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Finally, in order to obtain a better readability of this paper we denote by
m�B� the Lebesgue measure of the measurable set B, a.e. stands for almost
everywhere, and h�; �i denotes the scalar product de®ned as follows:

h�; �i :Yp � Yrÿ!R

�x; y� 7! hx; yi �
�

I

XN

k�1
xk�t�yk�t� dt

where 1
p
� 1

r
� 1.

Therefore, given a ®nite set of given trajectories AHYp the problem
consists of looking for a new trajectory x�, solving the following optimization
problem

inf
x AYp

Fp�x� �
X
a AA

oakxÿ akp �1p�

where oa are constants greater than 0.
It should be noted that Yp is a in®nite dimensional space, and the di½culty

when dealing with optimization in in®nite dimensional spaces are caused by
the fact that their topologies are more complex than the topology of RN . The
di¨erences are well-known in existence theory since in these spaces the
Existence Theorem of Weirstrass, which uses compactness arguments, is not
as useful as in ®nite theory. However in our case this gap can be avoided using
results on the connection between weak and strong topologies, which in fact
are consequence of the well known theorem of Mazur.

Before describing algorithms solving Problem �1p�, we want to establish
certain properties assuring that this problem is well-stated and that it has an
optimal solution.

For the sake of completeness we give an easy proof of the following
existence theorem.

Theorem 2.1. For any p A �1;�y� we have

inf
x AYp

Fp�x� � min
x AYp

Fp�x�

Proof: It is straightforward to see that any optimal solution of Problem �1p�
must belong to Cp � fy A Yp : kykp U 2maxa AA kakpg.

On the other hand, the objective function Fp is a continuous convex func-
tion de®ned on the bounded set Cp. Using Proposition 38.12 in Ekeland et al.
(1979) we have that there exists the minimum of Fp within Cp which proves
the result. r

For p � 1, Y1 is not re¯exive and this theorem cannot be applied. To
assure existence in this case, we have to embed Y1 in the space NBV�I ;RN�,
the normalized space of functions of bounded variation. Since, NBV�I ;RN�
can be uniquely identi®ed with the dual of C�I ;RN� then Problem (11) also
has optimal solution in NBV�I ; RN�. In conjunction with the previous results
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of existence, we conclude this section studying the uniqueness of solution for
Problem �1p�. In order to do that we introduce the concept of non collinearity.

De®nition 2.1. The set A of demand points is called non collinear if it contains
three elements a; a 0; and a 00 such that does not exist l A �0; 1� verifying a �
la 0 � �1ÿ l�a 00.

Then we have the following result.

Theorem 2.2. If the set A of demand points is non collinear then there exists a
unique optimal solution to Problem �1p�, Ep A �1;�y�.

Proof: Let us consider the function F�x� �Pa AA oada�x� where da�x� �
kxÿ akp. We will prove that F � F�x� is a strictly convex function when A is

non collinear.
If F is not strictly convex there exist y A �0; 1�, x; y A Yp with x0 y such

that

da�yx� �1ÿ y�y� � yda�x� � �1ÿ y�da�y� Ea A A

which implies that exist 0U la such that x�t� ÿ a�t� � la�y�t� ÿ a�t�� a:e:.
Since x0 y, it follows that la 0 1. Hence,

1

1ÿ la
x�t� ÿ la

1ÿ la
y�t� � a�t� a:e: and Ea A A

which contradicts that A is non collinear. Hence F is strictly convex. Once F
is strictly convex the result follows. r

3 Weiszfeld's dynamic algorithm

The objective function Fp is convex because the norm k � kp is a convex func-
tion for pV 1. As a result of the convexity of Fp we know that necessary
conditions are also su½cient for optimality (see e.g. Bazaraa et al. (1979)). It is

worth notice that the general optimality condition is
qFp

qxk
�x; h�V 0 Eh A Yp

k � 1; . . . ; n p > 1 where qF
qxk
�x; h� stands for the directional derivative of Fp

at x in the direction of h.
However, we cannot use this expression to develop an interative algorithm

to solve the problem. Nevertheless, for those solutions not equal everywhere
to any demand function qF

qxk
�x; h� is a Gateaux di¨erential and hence linear

continuous functional on Yp, therefore x is a solution of �1p� i¨

qFp

qxk
�x; h� � 0 k � 1; . . . ; n Eh A Yp p > 1: �1�

It should be noted that the above expression cannot be used for p � 1 because
Fp� � � is not di¨erentiable for p � 1.
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The derivative in (1) can be written for a particular k, 1U k UN, asX
a AA

oa kxÿ ak1ÿp
p

�
I

jxk�t� ÿ ak�t�jpÿ2�xk�t� ÿ ak�t��hk�t� dt

� �
� 0

Eh � �h1; . . . ; hN� A Yp:X
a AA

oa

kxÿ akpÿ1
p

hjxk ÿ akjpÿ2�xk ÿ ak�; hki � 0 Ehk A Xp:

Using the completeness of Xp, the following expression holds,X
a AA

oa

kxÿ akpÿ1
p

jxk�t� ÿ ak�t�jpÿ2�xk�t� ÿ ak�t�� � 0 a:e:

Isolating the unknown variable we obtain that the optimal solution must
verify the following equation in order to be an optimal solution of Problem
(1p).

xk�t� �
X
a AA

oajxk�t�ÿak�t�j pÿ2
kxÿak pÿ1

pP
a AA

oajxk�t�ÿak�t�j pÿ2
kxÿakpÿ1

p

ak�t� Ek � 1; . . . ;N

Thus, we obtain an iterative process by means of the ®xed point equation,
c�x� � x; where c�x� � �c1�x�; . . . ;cN�x�� is given by

ck�xq��t� �
X
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kxqÿak pÿ1

pP
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿak pÿ1

p

ak�t� Ek � 1; . . . ;N: �2�

The main di¨erence of this expression with respect to the scheme for the
®nite dimensional case is that in its present form c�x� is a function of t. With
this in mind, the iterative scheme is

x
q�1
k �t� �

X
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿak pÿ1

pP
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿakpÿ1

p

ak�t� k � 1; . . . ;N �3�

From this de®nition we can make the following observations:

1. Case pV 2.
If xq � a a.e., for some a A A then xq�1 is not well-de®ned and conse-
quently we modify the de®nition of the iterate xq�1, being xq�1�t� �
a�t� Et. So that, xq�1, is ®nally de®ned in the following way

xq�1 � c�xq�; if xq ÿ a0 0 a:e: for all a A A

a; if xq ÿ a � 0 a:e:; for some a A A

(
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2. Case 1U p < 2. In this case we de®ne the following set

Ak�x� � ft A I : ba A A; jxk�t� ÿ ak�t�j � 0g �4�

If there exists Ak�xq�H I , with m�Ak�xq�� > 0 so that x
q
k�t� � ak�t� Et A

Ak�xq�, we de®ne x
q�1
k �t� � ak�t� for all t A Ak�xq�.

Thus, x
q�1
k �t� is de®ned in the following way

x
q�1
k �t� �

ak�t�; Et A Ak�xq�
ck�xq��t�; Et A InAk�xq�

(

Remark 3.1. The iterations de®ned by the Weiszfeld dynamic algorithm
does not coincide with the function generated pointwise from the classical
Weiszfeld algorithm applied to every point in I. This fact can easily be shown
looking at the expression of the iterates (3). For p > 1, that formula depends
for each t A I on the norm of kxq ÿ ak for all a A A. This dependence does not
appear on the pointwise approach because in this case for each t A I it depends
on jxq�t� ÿ a�t�jpÿ1p . It should be noted that in this case j � jp stands for the

norm lp in Rn. For further details see the Example in Section 5.2. There, we
show that the solution obtained by solving the problem in every point of the
interval I is worse that the solution of the problem obtained iterating in Yp.

4 Properties of Weiszfeld's dynamic algorithm

In this section we present some preliminary properties of the iterative scheme
we have previously introduced in Section 3. In order to study the convergence
of this scheme we consider the following sets,

Hk � fx A Yp : bAk�x� with m�Ak�x�� > 0g

where Ak�x� was de®ned in (4). Then, we introduce the set

Sp �
6
k

Hk; if 1U p < 2

Â; if pV 2

8<:
where Â is a set of functions with the same cardinality that A such that for
each â A Â there exists a unique a A A with â � a almost everywhere.

It is straightforward to see that this iterative approach is actually a modi-
®ed gradient descent method. However, the global convergence depends on
the range of admissible values for the parameter p. Indeed, provided that
xq 0 a a.e. for all a A A,

x
q�1
k �t� � x

q
k�t� ÿ

X
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿak pÿ1

pP
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿak pÿ1

p

�xq
k�t� ÿ ak�t��
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then xq�1 � �xq�1
1 ; . . . ; xq�1

N � veri®es

xq�1�t� � xq�t� ÿ S q�1�t�`Fp�xq��t�

where S q�1�t� is a diagonal N �N matrix being the k ÿ th entry

S
q�1
k �t� � 1P

a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿak pÿ1

p

:

De®nition 4.1. A function x A Yp is said to be regular with respect to Problem
�1p� if x B Sp.

Proposition 4.1. Let x� denote an optimal solution of Problem �1p� with p > 1.

a) If xq � x� a.e. then xq�1 � x� a.e.
b) xq B Sp and xq�1 � xq a.e. then xq � x� a.e.

Proof: The proof runs parallel to the one given in the ®nite dimensional case,
Brimberg and Love (1993), and it is left to the reader. r

Proposition 4.2. (Descent property) If 1U pU 2, and xq�1 and xq do not
coincide almost everywhere then F�xq�1� < F�xq�.

Proof: Assuming xq is given we know that

x
q�1
k �t� �

X
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿak pÿ1

pP
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿakpÿ1

p

ak�t�

Let us de®ne V�xq� � fk : xq B Hkg. For each ®xed yk A Lp�I ;R� and k A
V�xq� consider

gk�yk��t� �
X
a AA

oajxq
k�t� ÿ ak�t�jpÿ2
kxq ÿ akpÿ1

p

�yk�t� ÿ ak�t��2

gk as a function of yk is strictly convex and

q

qyk

gk�yk��t� � 2
X
a AA

oajxq
k�t� ÿ ak�t�jpÿ2
kxq ÿ akpÿ1

p

�yk�t� ÿ ak�t��

Therefore, its minimum is achieved at

yk�t� �
X
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿak pÿ1

pP
a AA

oajx q

k
�t�ÿak�t�j pÿ2
kx qÿak pÿ1

p

ak�t�
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and as soon as t varies yk coincides almost everywhere with x
q�1
k Ek. There-

fore, the function gk is strictly convex and it reaches its minimum at x
q�1
k . As

x
q�1
k is the minimum, then:

gk�xq�1
k ��t� < gk�xq

k��t� �
X
a AA

oajxq
k�t� ÿ ak�t�jp
kxq ÿ akpÿ1

p

a:e: �5�

On the other hand, for k B V�xq� there exists a set Ak�xq�, with x
q
k�t� �

ak�t� Et A Ak�xq� for some a A A. Thus, if t A Ak�xq� x
q�1
k �t� � x

q
k�t�. In this

case we de®ne for each t

hk�y��t� �
P

a AA

oajyk�t� ÿ ak�t�jp
kxq ÿ akpÿ1

p

; t A Ak�xq�

gk�y��t�; t B Ak�xq�

8><>: �6�

Now, for all k B V�xq� since x
q�1
k �t� � x

q
k�t� whenever t A Ak�xq� we obtain

hk�xq�1
k ��t� � hk�xq

k��t� t A Ak�xq�;

and using (5) and (6) for any t B Ak�xq�

hk�xq�1
k ��t� < hk�xq

k��t� t B Ak�xq� �7�

Therefore, we have

�
I

X
k AV�x q�

gk�xq�1
k ��t� �

X
k BV�x q�

hk�xq�1
k ��t�

0@ 1A dt

<

�
I

X
k AV�xq�

gk�xq
k��t� �

X
k BV�x q�

hk�xq
k��t�

0@ 1A dt

�
X
a AA

XN

k�1
oakxq ÿ ak1ÿp

p

�
I

jxq
k�t� ÿ ak�t�jp dt

�
X
a AA

oakxq ÿ akp

� F �xq� �8�

The strict inequality previously obtained is due to the strict convexity of gk� � �,
and the fact that it reaches its minimum at xk�1 and (7). Now, we proceed to
get the thesis of this theorem. In order to obtain this inequality we do the
following,
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�
I

X
k AV�x q�

gk�xq�1
k ��t� �

X
k BV�x q�

hk�xq�1
k ��t�

0@ 1A dt

�
�

I

X
a AA

X
k AV�x q�

oajxq
k�t� ÿ ak�t�jpÿ2
kxq ÿ akpÿ1

p

�xq�1
k �t� ÿ ak�t��2

0@ 1A dt

�
�

t BAk�x q�

X
a AA

X
k BV�x q�

oajxq
k�t� ÿ ak�t�jpÿ2
kxq ÿ akpÿ1

p

�xq�1
k �t� ÿ ak�t��2

0@ 1A dt

�
�

t AAk�x q�

X
a AA

X
k BV�x q�

oajxq�1
k �t� ÿ ak�t�jp
kxq ÿ akpÿ1

p

0@ 1A dt �9�

If k B V�xq� and t A Ak�xq� then we have that x
q
k�t� � x

q�1
k �t�.

Thus, considering the previous equation (9) we obtain;

�
I

X
k AV�x q�

gk�xq�1
k �t�� �

X
k BV�x q�

hk�xq�1
k �t��

0@ 1A dt

�
�

I

X
a AA

XN

k�1
oakxq ÿ ak1ÿp

p jxq
k�t� ÿ ak�t�jpÿ2�xq�1

k �t� ÿ ak�t��2
 !

dt

Now, bounding the second part of this equation, we obtain the following
expression

�
I

X
a AA

XN

k�1
oakxq ÿ ak1ÿp

p jxq
k�t� ÿ ak�t�jpÿ2�xq�1

k �t� ÿ ak�t��2 dt �10�

V
�

I

X
a AA

XN

k�1
oakxq ÿ ak1ÿp

p

� pÿ 2

p
jxq

k�t� ÿ ak�t�jp � 2

p
jxq�1

k �t� ÿ ak�t�jp
� �

dt

�
X
a AA

oa 1ÿ 2

p

� �
kxq ÿ akp

� 2

p

X
a AA

oakxq ÿ ak1ÿp
p

XN

k�1

�
I

jxq�1
k �t� ÿ ak�t�jp dt �11�
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V
X
a AA

oa 1ÿ 2

p

� �
kxq ÿ akp

� 2

p

X
a AA

oa �1ÿ p�kxq ÿ akp � pkxq�1 ÿ akp

h i
� ÿF�xq� � 2F�xq�1� �12�

where the same inequality (see Chapter 1 in Beckenbach (1965)) has been
employed in (10) and (11). Therefore, from (8) and (12), we get the following
inequality

ÿF �xq� � 2F �xq�1� < F �xq� 1U pU 2

Hence, we obtain

F �xq�1� < F �xq� 1U pU 2:

Thus, we have proved that our algorithm gives a descent sequence for 1U
pU 2. r

In the previous proof we have used the inequalities (10) and (11). To use
the inequality (10) it is necessary that

pÿ2
2

U 2, that is, pU 6. To use the
inequality (11) it is necessary that 1ÿ pU 0, that is, pV 1.

Under the same hypotheses that in Proposition 4.2 the following result
holds.

Corollary 4.1. The sequence given by fF�xq�gq AN where fxqgq AN is the
sequence generated by the mapping c, is convergent for p A �1; 2�.

Proposition 4.3. For any starting point x0 and p A �1; 2�, the sequence originated
from the algorithm, contains at least a subsequence weakly convergent.

Proof: Since the sequence veri®es

kxqkp U
X
a AA

kakp Eq

then it is bounded. Now using that every bounded set in Yp is weakly se-
quentially compact, see Daniel (1971), it follows that the sequence generated
by the mapping c contains a subsequence weakly convergent. r

5 The convergence of Weiszfeld's dynamic algorithm

In this section we study the convergence of the proposed scheme for the
Dynamic Weber problem. We will show that under mild hypotheses for p � 1
and p � 2 the scheme converges to an optimal solution of Problem �1p�.
Additional hypothesis over the set of demand functions are needed to
prove convergence for p A �1; 2�, which shows the di¨erence with the ®nite-
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dimensional case. For p > 2 it may happen that the step-size is too large
causing Fp to increase between iterations

5.1 CASE p � 1 and p � 2

Lemma 5.1. The algorithm given by the scheme xq � c�xqÿ1� where c was
de®ned in (2) is convergent for p � 1 and p � 2.

Proof: Case p � 1
This is a special case because the norm in the space Y1 is non di¨erentiable.

Therefore, the ®xed point equation obtained to develop the Weiszfeld algo-
rithm is not a necessary condition for optimality. Despite that, we consider the
scheme of the Weiszfeld algorithm obtained for p > 1, even in the case p � 1.
That is, the scheme is given by the following expression

x
q�1
k �t� �

X
a AA

oajxq
k�t� ÿ ak�t�jÿ1P

a AA oajxq
k�t� ÿ ak�t�jÿ1

ak�t� k � 1; . . . ;N

This sequence coincides with the sequence generated by the Weiszfeld algo-
rithm for the pointwise case and it is well-known, Brimberg and Love (1993),
that this scheme is convergent in the pointwise case. Let x��t� be the pointwise
limit. Then, we can apply the dominated convergence theorem to the sequence
fxq ÿ x�gqV1 to deduce that x� is also the limit of the considered sequence in
the strong topology of the space Y1.

Case p � 2
The sequence generated by the algorithm for p � 2 is given by,

xq�1�t� �
X
a AA

oa

kx qÿak2P
a AA

oa

kx qÿak2
a�t�

Therefore, it follows that fxqgH aff fAg, where aff �A� is the a½ne manifold
generated by the elements in A. Since in our case the variety is generated by a
®nite number of elements then dim�aff fAg� <y.

On the other hand, by Proposition 4.3 fxqgq AN is weakly convergent and it
is included in a linear variety of ®nite dimension then it contains a sub-
sequence strongly convergent.

We can assume without loss of generality that c�xk�0 xk for any k, where
c was de®ned in �2�. Otherwise, we would have that the whole sequence con-
verges to xk in a ®nite number of steps.

We will prove the convergence by contradiction. Let us assume that the
sequence fxqg has two accumulation points p1 0 p2. We can consider a ball
B1, centered at p1 such that p2 B B1. In addition, we can choose a subsequence
fxnkgkV1 verifying:

1. xnk ! p1

2. xnk�1 � c�xnk � B B1 for all k V 1.

Otherwise p2 would not be an accumulation point di¨erent from p1.
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The sequence fc�xnk �gkV1 has a limit because under our hypotheses c is a
continuous function. Moreover, this limit is limk!y c�xnk � � c�p1�. Since the
whole sequence fc�xnk �gkV1 does not belong to B1 then c�p1� cannot belong
to int�B1�. Therefore c�p1� B B1, (in particular that means that p1 B A).

However, we have that

xnk 0c�xnk � and c�xnk �0 xnk�1

Hence applying Proposition 4.1, we get

F �xnk � > F �c�xnk �� � F�xnk�1� > F �xnk�1�
and taking limit when k goes to in®nity

F �p1�VF �c�p1��VF �p1�
what contradicts that F�p1�0F�c�p1��. Therefore, we have proved the thesis
of this theorem. r

Theorem 5.1. Let fxqgq AN be a regular sequence generated by the algorithm for

p � 1 or 2 whose limit does not coincide with a demand function a.e.. Then
fxqgq AN converges to an optimal solution of Problem �1p�.

Proof: Since for p � 1 the iterates of Weiszfeld's adapted algorithm are the
same that for the pointwise case (see Lemma 5.1) the thesis follows directly
from the convergence results in Brimberg and Love (1993). Now for p � 2,
again using Lemma 5.1 the sequence generated by the algorithm converges
under these hypotheses. Let x� be the limit. Then we have,

x� � lim
q!y

xq � lim
q!y

xq�1 � c� lim
q!y

xq� � c�x��

As we assume that x� B A then x� ÿ c�x�� � 0 is equivalent to the fact that
the Gateaux di¨erential of F at x� in the direction of h, for any h A Y2 equals
zero. That is to say,

`F�x�; h� � 0 Eh A Y2

Therefore x� is an optimal solution. r

Concerning the regularity of the optimal solutions generated by our
method for p � 2, we want to point out that the solutions have the same
properties that the demand functions because they belong to the a½ne mani-
fold spanned by these demand functions.

5.2 CASE p A �1; 2�

In the previous subsection has been proved the convergence of Weiszfeld's
dynamic algorithm for p � 1 and p � 2. The proof for p � 2 is based on the
fact that we can obtain a convergent subsequence from the sequence obtained
by the adaptation of Weiszfeld's algorithm. However, if p A �1; 2� we do not
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have this result. For this reason, we impose additional conditions on the set of
demands functions to obtain the convergence of the algorithm for this case.

Firstly, we consider the Sobolev space W 1;p�I ;RN� . It is de®ned, Brezis
(1983), as follows

W 1;p�I ;RN� �
(

x A Yp : bg A Yp such that

�
I

x�t�f 0�t� dt

� ÿ
�

I

g�t�f�t� dt Ef A C1
c �I�

)
where C1

c �I� is the space of functions continuously di¨erentiable with compact
support. We denote g � x 0, because if x is di¨erentiable and its derivative be-
longs to Yp then the function g is its derivative.

Recall that W 1;p is a Banach space with the norm de®ned for any u A W 1;p

as

kuk1;p � kukp � ku 0kp

In order to improve the readability of the paper we include without proof
several properties that hold in these spaces that will be used to prove the
strong convergence results. The proofs of these properties and further details
on Sobolev spaces can be found in the book of Brezis (1983), which will be our
reference for this subject.

Lemma 5.2. The following statements hold

i) Let u; v A W 1;p�I ;RN� then uv A W 1;p�I ;RN�
ii) There exists a compact embedding from W 1;p�I ;RN� into Lp�I ;RN�.
iii) W 1;p�I ;RN� is a re¯exive Banach space.

The existence of a compact embedding is a very important fact because it
implies that if a sequence converges in the weak topology of W 1;p�I ;RN� then
also converges in the strong topology of Yp. Since W 1;p�I ;RN� is a re¯exive
Banach space we have that every bounded sequence has a convergence sub-
sequence in its weak topology.

Lemma 5.3. If the set A of demand functions is included in W 1;p�I ;RN�, the
starting function xo A W 1;p�I ;RN� and xqÿ1 B Sp then xq � c�xqÿ1� is in-
cluded in W 1;p�I ;RN�.

Proof: Recall that c is de®ned in (2) as

c�x��t� �
X
a AA

ja;x�t�a�t�

where

ja;x�t� �
oakxÿ ak1ÿpjx�t� ÿ a�t�jpÿ2P

a AA oakxÿ ak1ÿpjx�t� ÿ a�t�jpÿ2
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Thus, to prove that the sequence generated by the algorithm is included in
W 1;p�I ;RN� it su½ces to prove that c�x� and c 0�x� belong to Yp for all x A
W 1;p�I ;RN�nSp.

Since 0U ja;x�t�U 1 for all t, then c�x� is bounded by the functionP
a AA a which belongs to Yp. Hence, c�x� A Yp Ex A W 1;p�I ;RN�nSp. Now,

we have to prove that c 0�x� A Yp Ex A W 1;p�I ;RN�nSp. We know that

c 0�x��t� �
X
a AA

j 0a;x�t�a�t� �
X
a AA

ja;x�t�a 0�t�:

Since 0U ja;x�t�U 1 and a A W 1;p�I ;Rm� we have that
P

a AA ja;x�t�a 0�t� A
Yp. Therefore, since all the demand functions are bounded in order to prove
that

P
a AA j 0a;x�t�a�t� A Yp we only have to prove that

P
a AA j 0a;x�t� A Yp. To

this end, we compute j 0a;x� � �.
In order to simplify the notation we introduce the following functions

ha;x�t� :� jx�t� ÿ a�t�jpÿ2

qa;x :� oakxÿ ak1ÿp
p

cx�t� :�
X
a AA

qa;xha;x�t�
 !2

Therefore, we can write down j 0a;x in the following way

j 0a;x�t� �
qa;xh 0a;x�t�

P
b AA qb;xhb;x�t� ÿ qa;xha;x�t�

P
b AA qb;xh 0b;x�t�

cx�t� :

Using this expression it is straightforward to see that
P

a AA j 0a;x�t� � 0. From
this result we deduce that

P
a AA j 0a;x�t� A Yp. Hence, using Lemma 5.2

c�x��t� �
X
a AA

ja;x�t�a�t� A W 1;p�I ;RN� Ex A W 1;p�I ;RN�nSp:

Thus, the proof is complete. r

In the following, we study the convergence of the proposed algorithm for
the dynamic Weber problem. First of all, it should be noted that the sequence
generated by the algorithm is bounded. Then, it contains a subsequence
weakly convergent in Yp. However, this result is not enough and we look for
additional conditions which assure the strong convergence of the sequence.
We will prove the global convergence of this scheme for p A �1; 2� provided
that the starting function belongs to the Sobolev space W 1;p�I ;RN�.

Theorem 5.2. Assume that every demand function a A A belongs to
W 1;p�I ;RN�, the starting point of the algorithm also belongs to W 1;p�I ;RN�,
the sequence generated by the algorithm and its limit is a regular function for
p A �1; 2�. Then, this sequence strongly converges to an optimal solution of
Problem �1p� for p A �1; 2�.
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Proof: We have already proved that the sequence generated by the algorithm
is bounded. By Lemma 5.3 it is included in the Sobolev space W 1;p�I ;RN�.
Thus, using Lemma 5.2, ii) we have that there exists a convergent sub-
sequence. By Proposition 4.2 the sequence generated by the algorithm is
descent. Then using the same arguments that in the case p � 2 we obtain that
the whole sequence is convergent and its limit is the optimal solution of
Problem �1p�. r

In what follows an example is included illustrating the use of Weiszfeld's
algorithm. Moreover, it shows that the pointwise application of classical
Weiszfeld's algorithm does not work with the dynamic Weber problem. Let us
denote by w�a;b��t� the indicator function of the interval �a; b�, that is

w�a;b� �
1; if t A �a; b�
0; other case

(

Example. Let us consider for N � 2 the space Y2 � L2�0; 5� � L2�0; 5�. In this
space, we consider the demand functions

a1�t� � �0; 0�w�0;2��t� � �5; 4�w�2;5��t�

a2�t� � �4; 0�w�0;2��t� � �1; 2�w�2;5��t�

a3�t� � �2; 4�w�0;2��t� � �7; 3�w�2;5��t�

and weights

o1 � o2 � 2
5

o3 � 1
5
:

We use to solve this example the proposed Weiszfeld adapted algorithm
with starting function

xo�t� � �2; 0:5�w�0;2��t� � �4; 3:5�w�2;5��t�:

After 139 iterations the optimal solution is found. Table 1 shows the
iterations of the algorithm. The column It. gives the number of iterations;
Functions gives the iterates and Objective the objective value of the problem
for the corresponding iteration.

A total of 139 iterations were necessary to obtain an optimal solution. On
the left-hand side of this table the 28 ®rst iterations are shown. On the right-
hand side the last 28 iterations are included. Note that for this example an
optimal solution is �0:614988; 0:285896�w�0;2��t� � �4:67091; 3:69251�w�2;5��t�
and the optimal objective value is 5.29298.

On the other hand, we also solve the problem point-wisely. That is to say,
we solve the problem using Weiszfeld's algorithm applied to every point in
the interval �0; 5�. Since we are considering demand functions with only
two di¨erent steps, this is equivalent to solve two di¨erent classical Weber
problems. The ®rst one having demand points �0; 0�, �4; 0� and �2; 4� and the
second one �5; 4�, �1; 2� and �7; 3�. Using as starting points �2; 0� and �4; 3�
respectively, Table 2 and 3 show the iterations of these two problems.
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Table 1. Iterations of Weiszfeld's adapted algorithm

It. Functions Objective

1 �1:3358; 0:515323�w�0; 2��t� � �4:17952; 3:3321�w�2; 5��t� 5.33666

2 �1:22076; 0:492286�w�0; 2��t� � �4:27153; 3:38962�w�2; 5��t� 5.3233

3 �1:12804; 0:46992�w�0; 2��t� � �4:34188; 3:43598�w�2; 5��t� 5.31443

4 �1:05272; 0:448851�w�0; 2��t� � �4:39613; 3:47364�w�2; 5��t� 5.30842

5 �0:991041; 0:429736�w�0; 2��t� � �4:4387; 3:50448�w�2; 5��t� 5.30428

6 �0:940075; 0:41278�w�0; 2��t� � �4:47271; 3:52996�w�2; 5��t� 5.30137

7 �0:897583; 0:397911�w�0; 2��t� � �4:50033; 3:55121�w�2; 5��t� 5.29928

8 �0:861848; 0:384934�w�0; 2��t� � �4:52309; 3:56908�w�2; 5��t� 5.29777

9 �0:831556; 0:373619�w�0; 2��t� � �4:54206; 3:58422�w�2; 5��t� 5.29665

10 �0:805691; 0:363746�w�0; 2��t� � �4:55806; 3:59715�w�2; 5��t� 5.29582

11 �0:783464; 0:355114�w�0; 2��t� � �4:57165; 3:60827�w�2; 5��t� 5.29519

12 �0:764254; 0:347549�w�0; 2��t� � �4:58329; 3:61787�w�2; 5��t� 5.29471

13 �0:747566; 0:340902�w�0; 2��t� � �4:59334; 3:62622�w�2; 5��t� 5.29434

14 �0:733005; 0:335046�w�0; 2��t� � �4:60204; 3:6335�w�2; 5��t� 5.29406

15 �0:720247; 0:329875�w�0; 2��t� � �4:60963; 3:63988�w�2; 5��t� 5.29384

16 �0:70903; 0:325299�w�0; 2��t� � �4:61627; 3:64549�w�2; 5��t� 5.29366

17 �0:699136; 0:321239�w�0; 2��t� � �4:6221; 3:65043�w�2; 5��t� 5.29352

18 �0:690385; 0:31763�w�0; 2��t� � �4:62724; 3:65481�w�2; 5��t� 5.29342

19 �0:682626; 0:314416�w�0; 2��t� � �4:63179; 3:65869�w�2; 5��t� 5.29333

20 �0:67573; 0:31155�w�0; 2��t� � �4:63582; 3:66214�w�2; 5��t� 5.29326

21 �0:669589; 0:308989�w�0; 2��t� � �4:6394; 3:66521�w�2; 5��t� 5.29321

22 �0:664111; 0:306698�w�0; 2��t� � �4:64259; 3:66794�w�2; 5��t� 5.29316

23 �0:659217; 0:304646�w�0; 2��t� � �4:64543; 3:67039�w�2; 5��t� 5.29313

24 �0:654837; 0:302806�w�0; 2��t� � �4:64797; 3:67258�w�2; 5��t� 5.2931

25 �0:650913; 0:301155�w�0; 2��t� � �4:65024; 3:67454�w�2; 5��t� 5.29308

26 �0:647394; 0:299671�w�0; 2��t� � �4:65228; 3:6763�w�2; 5��t� 5.29306

27 �0:644234; 0:298336�w�0; 2��t� � �4:6541; 3:67788�w�2; 5��t� 5.29304

28 �0:641393; 0:297135�w�0; 2��t� � �4:65574; 3:6793�w�2; 5��t� 5.29303

112 �0:614993; 0:285898�w�0; 2��t� � �4:6709; 3:6925�w�2; 5��t� 5.29298
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Table 1 (continued)

It. Functions Objective

113 �0:614993; 0:285898�w�0; 2��t� � �4:67091; 3:6925�w�2; 5��t� 5.29298

114 �0:614992; 0:285898�w�0; 2��t� � �4:67091; 3:6925�w�2; 5��t� 5.29298

115 �0:614992; 0:285897�w�0; 2��t� � �4:67091; 3:6925�w�2; 5��t� 5.29298

116 �0:614992; 0:285897�w�0; 2��t� � �4:67091; 3:6925�w�2; 5��t� 5.29298

117 �0:614991; 0:285897�w�0; 2��t� � �4:67091; 3:6925�w�2; 5��t� 5.29298

118 �0:614991; 0:285897�w�0; 2��t� � �4:67091; 3:6925�w�2; 5��t� 5.29298

119 �0:61499; 0:285897�w�0; 2��t� � �4:67091; 3:6925�w�2; 5��t� 5.29298

120 �0:61499; 0:285897�w�0; 2��t� � �4:67091; 3:6925�w�2; 5��t� 5.29298

121 �0:61499; 0:285897�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

122 �0:61499; 0:285897�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

123 �0:61499; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

124 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

125 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

126 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

127 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

128 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

129 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

130 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

131 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

132 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

133 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

134 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

135 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

136 �0:614989; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

137 �0:614988; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

138 �0:614988; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298

139 �0:614988; 0:285896�w�0; 2��t� � �4:67091; 3:69251�w�2; 5��t� 5.29298
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The solution obtained after the application of this procedure is
�2; 0:516398�w�0;2� � �5; 4�w�2;5� and the objective value evaluated at this func-
tion is 5.73320.

The comparison of this value with 5.29298 (the objective value of the pre-
viously obtained solution) shows that our adaptation of Weiszfeld's algorithm
cannot be avoided by a pointwise application of the classical algorithm.

6 Conclusions

This paper shows an original application of classical tools of functional anal-
ysis to a well-known problem within the ®eld of the Operations Research. The
paper solves the problem of locating a moving service facility and it extends
Weiszfeld's algorithm to a general formulation of the Weber Problem on Lp

spaces and showing its global convergence for the cases of p A �1; 2�. For
p � 1 and p � 2 the proofs are extensions of the proofs given in the ®nite di-
mensional case. For p A �1; 2� additional hypotheses need to be assumed and a
new proof is given. Although similarities can be found with the pointwise
formulation this paper shows that the direct application of Weiszfeld's algo-
rithm to the considered extension of the problem does not assure convergence
to an optimal solution of the problem. This fact is due to the di¨erent topo-

Table 2. Iterations of Weiszfeld's
algorithm for the points in �0;2�

It. Functions Objective

1 (2., 0.503666) 2.34922

2 (2., 0.514076) 2.34919

3 (2., 0.515972) 2.34919

4 (2., 0.51632) 2.34919

5 (2., 0.516383) 2.34919

6 (2., 0.516395) 2.34919

7 (2., 0.516397) 2.34919

8 (2., 0.516398) 2.34919

9 (2., 0.516398) 2.34919

10 (2., 0.516398) 2.34919

11 (2., 0.516398) 2.34919

12 (2., 0.516398) 2.34919

13 (2., 0.516398) 2.34919

14 (2., 0.516398) 2.34919
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Table 3. Iterations of Weiszfeld's algorithm for the points in �2;5�

It. Functions Objective

1 (4.44796, 3.47534) 2.32396

2 (4.61555, 3.59042) 2.29595

3 (4.72927, 3.68265) 2.2776

4 (4.80511, 3.75471) 2.2656

5 (4.85635, 3.81) 2.25759

6 (4.89194, 3.85215) 2.25208

7 (4.91742, 3.88433) 2.24818

8 (4.93613, 3.90904) 2.24536

9 (4.95015, 3.92814) 2.24326

10 (4.96082, 3.94302) 2.24169

11 (4.96904, 3.95467) 2.24049

12 (4.97544, 3.96385) 2.23956

13 (4.98045, 3.9711) 2.23884

14 (4.98439, 3.97687) 2.23827

15 (4.98752, 3.98146) 2.23783

16 (4.99, 3.98512) 2.23748

17 (4.99198, 3.98804) 2.2372

18 (4.99356, 3.99039) 2.23697

19 (4.99483, 3.99227) 2.23679

20 (4.99584, 3.99378) 2.23665

21 (4.99665, 3.99499) 2.23654

22 (4.99731, 3.99597) 2.23645

23 (4.99783, 3.99675) 2.23637

24 (4.99825, 3.99738) 2.23631

25 (4.99859, 3.99789) 2.23626

26 (4.99887, 3.9983) 2.23623

27 (4.99909, 3.99863) 2.2362

28 (4.99926, 3.9989) 2.23617

29 (4.99941, 3.99911) 2.23615

It. Functions Objective

30 (4.99952, 3.99928) 2.23613

31 (4.99961, 3.99942) 2.23612

32 (4.99969, 3.99953) 2.23611

33 (4.99975, 3.99962) 2.2361

34 (4.9998, 3.9997) 2.2361

35 (4.99984, 3.99976) 2.23609

36 (4.99987, 3.9998) 2.23609

37 (4.99989, 3.99984) 2.23608

38 (4.99991, 3.99987) 2.23608

39 (4.99993, 3.9999) 2.23608

40 (4.99994, 3.99992) 2.23608

41 (4.99996, 3.99993) 2.23607

42 (4.99996, 3.99995) 2.23607

43 (4.99997, 3.99996) 2.23607

44 (4.99998, 3.99996) 2.23607

45 (4.99998, 3.99997) 2.23607

46 (4.99998, 3.99998) 2.23607

47 (4.99999, 3.99998) 2.23607

48 (4.99999, 3.99999) 2.23607

49 (4.99999, 3.99999) 2.23607

50 (4.99999, 3.99999) 2.23607

51 (4.99999, 3.99999) 2.23607

52 (5., 3.99999) 2.23607

53 (5., 3.99999) 2.23607

54 (5., 4.) 2.23607

55 (5., 4.) 2.23607

56 (5., 4.) 2.23607

57 (5., 4.) 2.23607

58 (5., 4.) 2.23607
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logical structure induced by the norm in the space Yp. An easy example is
solved showing this counterintuitive result.

Finally, with respect to the regularity of the solution provided by the
algorithm a few words should be added. In our general formulation any
function of Yp can be considered as demand function and consequently the
solution may be a general function of this space. Nevertheless, as soon as we
choose more regular demand functions (for instance in W 1;p�I ;RN� which is
a subspace of C�I ;RN�) the ®nal solution has the same properties. In this
sense, we provide tools for the application of our algorithm in the general case
although, of course, it can be applied in simpler cases.
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